

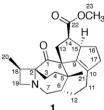
Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 1587–1589

Calyciphylline C, a novel *Daphniphyllum* alkaloid from *Daphniphyllum calycinum*

Shizuka Saito,^a Takaaki Kubota,^a Eri Fukushi,^b Jun Kawabata,^b Huiping Zhang^c and Jun'ichi Kobayashi^{a,*}


^aGraduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^bGraduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan ^cDepartment of Chemistry of Natural Drugs, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, People's Republic of China

Received 2 December 2006; accepted 25 December 2006

Abstract—Calyciphylline C (1), a novel *Daphniphyllum* alkaloid with unprecedented fused-hexacyclic ring system, has been isolated from the leaves of *Daphniphyllum calycinum* (Daphniphyllaceae), and the structure and relative stereochemistry were elucidated on the basis of spectroscopic data.

© 2007 Elsevier Ltd. All rights reserved.

Daphniphyllum alkaloids are a family of fused-heterocyclic natural products elaborated by the trees of the genus Daphniphyllum (Daphniphyllaceae).^{1,2} These ring systems have attracted great interest as challenging targets for total synthesis³ as well as biosynthetic studies.⁴ In our search for structurally unique and biogenetically interesting Daphniphyllum alkaloids,⁵ a novel Daphniphyllum alkaloid, calyciphylline C (1),⁶ was isolated from the leaves of Daphniphyllum calycinum. In this Letter, we describe the isolation and structure elucidation of 1.

The leaves of *D. calycinum* were extracted with MeOH, and the MeOH extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, which were adjusted to pH 10 with saturated Na₂CO₃, were extracted with CHCl₃. CHCl₃-soluble materials were subjected to an amino silica gel column (hexane/EtOAc, $1:0\rightarrow0:1$, and then CHCl₃/MeOH, $1:0\rightarrow0:1$) followed by a silica gel column (CHCl₃/MeOH, $1:0\rightarrow0:1$) to afford calyciphylline C (1, 0.00019% yield).

Calyciphylline C (1) showed that the pseudomolecular ion peak at m/z 370 (M+H)⁺ in the ESIMS, and the molecular formula, C₂₃H₃₁NO₃, was established by HRESIMS [m/z 370.2375, (M+H)⁺, Δ -0.7 mmu]. IR absorptions implied the presence of ester and keto carbonyl (1730 and 1700 cm⁻¹, respectively) functionality. ¹H and ¹³C NMR spectra of 1 showed some broad signals, indicating that 1 exists in several interconverting conformations. ¹H and ¹³C NMR data of 1 (Table 1) revealed 23 carbons signals due to one tetrasubstituted double bond, two carbonyls, three sp³ quaternary carbons, four sp³ methines, nine sp³ methylenes, two methyls, and one methoxy group. Among them, two methylenes ($\delta_{\rm C}$ 57.1, $\delta_{\rm H}$ 2.87, and 2.61; $\delta_{\rm C}$ 58.8, $\delta_{\rm H}$ 3.04, and 2.96) and one quaternary carbon ($\delta_{\rm C}$ 76.7) were ascribed to those bearing a nitrogen.

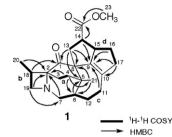
The gross structure of **1** was elucidated by the analyses of 2D NMR data including ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY, HMQC, and HMBC spectra in CD₃OD (Fig. 1). The ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY spectrum of **1** revealed four structural units **a** (C-3–C-4), **b** (C-18–C-19 and C-20), **c** (C-6–C-7 and C-12, and C-11–C-12), and **d** (C-13–C-17). HMBC correlations were observed for H₂-19 to C-7 (δ_{C} 57.1) and H₂-7 and H₂-19 to C-2 (δ_{C} 76.7), suggesting that C-2, C-7, and C-19 were connected to each other through a nitrogen

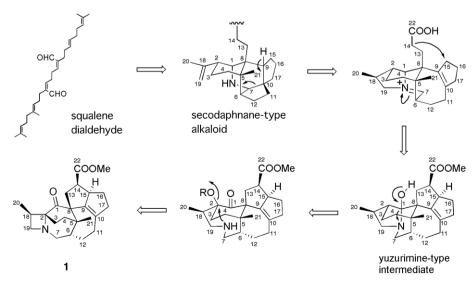
^{*} Corresponding author. E-mail: jkobay@pharm.hokudai.ac.jp

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.12.139

Position	$\delta_{ m H}$	δ_{C}
1	_	214.9 s
2		76.7 s
3a	2.29 (1H, m)	24.7 t
3b	1.51 (1H, m)	
4a	1.98 (1H, m)	36.4 t
4b	1.88 (1H, m)	
5	_	41.7 s
6	1.98 (1H, m)	51.5 d
7a	2.87 (1H, m)	57.1 t
7b	2.61 (1H, m)	
8		61.9 s
9		144.7 s
10		136.2 s
11	2.15 (2H, m)	27.4 t
12a	2.15 (1H, m)	27.9 t
12b	1.71 (1H, m)	
13a	2.78 (1H, m)	41.6 t
13b	1.98 (1H, m)	
14	3.11 (1H, m)	43.5 d
15	3.99 (1H, m)	58.0 d
16a	1.98 (1H, m)	30.8 t
16b	1.32 (1H, m)	
17a	2.61 (1H, m)	43.5 t
17b	2.33 (1H, m)	
18	3.04 (1H, m)	27.8 d
19a	3.04 (1H, m)	58.8 t
19b	2.96 (1H, m)	
20	1.13 (3H, br s)	15.1 q
21	1.24 (3H, s)	27.7 q
22	_	177.5 s
23	3.67 (3H, s)	52.6 q

atom. HMBC cross-peaks for H₂-4 and H₃-20 to C-2 indicated the connectivities of units **a** and **b** through C-2. The presence of a ketone at C-1 was suggested by the HMBC correlation for H-13 and H-18 to C-1 ($\delta_{\rm C}$ 214.9). The connectivity of C-1 and C-13 to C-9 through C-8 was implied by HMBC correlations for H₂-13 to C-1, C-8 ($\delta_{\rm C}$ 61.9), and C-9 ($\delta_{\rm C}$ 144.7). The connectivity of C-21 to C-4, C-6, and C-8 through C-5 was implied by HMBC correlations for H₂-4 to C-6 ($\delta_{\rm C}$ 51.5) and C-21 ($\delta_{\rm C}$ 27.7), H-6 to C-5 ($\delta_{\rm C}$ 44.9), H₂-13 to C-5,




Figure 1. Selected 2D NMR correlations for calyciphylline C (1).

and H₃-21 to C-6 and C-8. HMBC cross-peaks for H₂-11 and H₂-17 to C-9 and H₂-17 to C-10 ($\delta_{\rm C}$ 136.2) indicated the connectivities of units **c** and **d** through C-10. In addition, the HMBC correlation for H-14 and H-16 to C-9 indicated the connectivity of C-9 to C-16 through C-15. A methoxy group was attached to C-22 by HMBC correlations for H₃-23 and H-14 to C-22 ($\delta_{\rm C}$ 177.5). Thus, the gross structure of calyciphylline C was assigned as **1**.

The relative stereochemistry of **1** was deduced from NOESY correlations as shown in Figure 2. NOESY correlations of H₃-20/H-3, H-3/H-4, H-4/H₃-21, and H₃-21/H-6 indicated β -orientations of C-20, C-3, C-4, C-21, and H-6. On the other hand, α -orientations of H-14 and H-15 were deduced from NOESY correlation of H-14/H-15.

A plausible biogenetic pathway for calyciphylline C (1) is proposed as shown in Scheme 1. Calyciphylline C (1) might be generated from secodaphnane-type alka-loid⁷ through an yuzurimine-type intermediate with cleavage of the N-1–C-1 bond followed by the formation of the N-1–C-2 bond.

Calyciphylline C (1) is a novel *Daphniphyllum* alkaloid having an unprecedented fused-hexacyclic ring system (one four-, two five-, one six-, and two seven-membered rings). Investigations on the absolute stereochemistry and the solution conformation of 1 are currently carried out.

Scheme 1. Plausible biogenetic path of calyciphylline C (1).

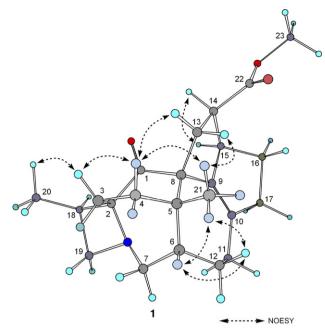


Figure 2. Selected NOESY correlations and relative stereochemistry for calyciphylline C(1).

Acknowledgments

The authors thank Ms. S. Oka and Ms. M. Kiuchi, Center for Instrumental Analysis, Hokkaido University, for the measurements of ESIMS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References and notes

- 1. For a review of *Daphniphyllum* alkaloids: Kobayashi, J.; Morita, H. In *The Alkaloid*; Cordell, G. A., Ed.; Academic Press: New York, 2003; Vol. 60, pp 165–205, and references cited therein.
- (a) Bitar, H. E.; Nguyen, V. H.; Gramain, A.; Sevenet, T.; Bodo, B. J. Nat. Prod. 2004, 67, 1094–1099; (b) Yang, S. P.; Yue, J. M. Org. Lett. 2004, 6, 1401–1404; (c) Bitar, H. E.; Nguyen, V. H.; Gramain, A.; Sevenet, T.; Bodo, B. Tetrahedron Lett. 2004, 45, 515–518.
- (a) Heathcock, C. H.; Joe, D. J. Org. Chem. 1995, 60, 1131– 1142; (b) Heathcock, C. H.; Kath, J. C.; Ruggeri, R. B. J. Org. Chem. 1995, 60, 1120–1130.
- 4. Heathcock, C. H. Proc. Natl. Acad. Sci., USA 1996, 93, 14323–14327, and references cited therein.
- Kubota, T.; Matsuno, Y.; Morita, H.; Shinzato, T.; Sekiguchi, M.; Kobayashi, J. *Tetrahedron* 2006, 62, 4743– 4748.
- 6. Calyciphylline C (1). A colorless solid; $[x]_{D}^{18} -21.5$ (c 0.2, MeOH); IR (neat) v_{max} 1730 and 1700 cm⁻¹; UV (MeOH) λ_{max} 215 nm (ε 4762); ¹H and ¹³C NMR data (Table 1); ESIMS m/z 370 (M+H)⁺; HRESIMS m/z 370.2375 (M+H; calcd for C₂₃H₃₂NO₃, 370.2382).
- Secodaphnane-type alkaloids such as daphniphylline and codaphniphylline were biosynthesized from six moles of mevalonic acid through a squalene-like intermediate. Suzuki, K. T.; Okuda, S.; Niwa, H.; Toda, M.; Hirata, Y.; Yamamura, S. *Tetrahedron Lett.* **1973**, 799–802.